MECONIUM STAINED AMNIOTIC FLUID AND ITS NEONATAL OUTCOME IN A RURAL TERTIARY CARE CENTER NEAR MATHURA
Nitin Gyaras Puria¹, Krishna Pada Dutta²

Assistant Professor, Department of Pediatrics, KD Medical College, Hospital and Research Centre, Mathura (U.P.)-281406, India.¹
Professor and HOD, Department of Pediatrics, KD Medical College, Hospital and Research Centre, Mathura (U.P.)-281406, India.²

Article Info: Received 04 April 2020; Accepted 20 May 2020
DOI: https://doi.org/10.32553/ijmbs.v4i5.1133
Conflict of interest: No conflict of interest.

Abstract
The presence of meconium stained amniotic fluid (MSAF) is a sign of fetal compromise. It is associated with significant neonatal morbidity and mortality. MSAF is frequently associated with high cesarean rate, prolonged labour, low APGAR scores, increased rate of birth asphyxia; increased NICU admission, meconium aspiration syndrome and neonatal death. The aim of this prospective study is to correlate the effect of meconium stained amniotic fluid on neonatal outcome.

Keywords: Meconium stained amniotic fluid, Neonatal morbidity and mortality, NICU.

Introduction
The fetus and the newborn cannot be considered as two distinct entities. Any situation that compromises the fetus’ well-being e.g alterations in the amniotic fluid quantities and properties, could influence the clinical status of the neonate at birth, and in severe cases, compromise its future.¹ Meconium is found in fetal gut from 10 weeks of gestation but passage of meconium in amniotic fluid is rare before 34 weeks. Incidence of meconium passage increases with gestational age.²³ Passage of meconium into amniotic fluid might be a physiologic phenomenon of GIT maturation, or as a sign of acute or chronic hypoxic event, thus making it a indicator of fetal distress⁴.

Traditionally, meconium has been viewed as a harbinger of impending or ongoing fetal compromise and is associated with fetal hypoxia, acidosis or fetal distress.⁵ The predictive value of meconium was better when it occurred in high risk patients and was thick, dark and tenacious. Thinly stained meconium had a poor correlation with fetal hypoxia.⁶

The objective of this prospective study was to determine the neonatal outcome in meconium stained liquor and its correlation between thin and thick MSL.

Material and Methods:
This prospective case control study was carried out at KD Medical College, Hospital and Research Centre, Mathura (U.P.) in the Pediatric Department after taking informed and written consent. This study was conducted from August 2019 to January 2020. The study included neonates born with meconium stained amniotic fluid with gestational age > 37 weeks.

Discussion:
MAS is more frequently seen in post-term pregnancy. Factors such as placental insufficiency, maternal hypertension, pre-eclampsia, oligo-hydroamnios result in, in utero passage of meconium.⁷ The moderate and thick meconium group has a significantly greater risk of an abnormal fetal heart rate, low 1 and 5 minute Apgar scores, a cord blood pH of less than 7.2, birth asphyxia, need for O2 support and NICU admission of babies.⁸ Aspiration of the meconium into fetal or neonatal lungs is associated with clinical disease ranging from mild respiratory distress to severe respiratory compromise and causes significant increase in perinatal morbidity and mortality.⁹ Early identification of high risk cases with improved neonatal and perinatal care can decrease perinatal mortality.⁹

1. Frequency and nature (consistency) of amniotic fluid:
The incidence of thin MSL and thick MSL is 87.91% (131 cases) and 12.1% (18 cases) which is comparable with other studies.

Table 1:

<table>
<thead>
<tr>
<th></th>
<th>Thin MSL</th>
<th>Thick MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debdas⁹</td>
<td>78.75%</td>
<td>21.25%</td>
</tr>
<tr>
<td>Arun¹⁰</td>
<td>51.15%</td>
<td>48.85%</td>
</tr>
<tr>
<td>Erum majid Shaikh¹¹</td>
<td>78%</td>
<td>22%</td>
</tr>
<tr>
<td>Present Study</td>
<td>87.9%</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

The mean difference between two groups is statistically significant (p value = .000). Wiswell TE, Hernandez C¹² have reported incidence of thick MSL between 7-22% of live births which are consistent with our study (12.1%).
2: Respiratory distress: Total number of cases with respiratory distress is 33 (22.15%), out of which 16 (12.21%) cases are of thin MSL and 17 (94.4%) cases are of thick MSL. The mean difference between two groups is statistically significant (p value = .000). Schaffer\(^{14}\) (1971) concluded aspiration of meconium was one of the major cause of dyspnea and respiratory distress in the newborn.

3: Delayed crying: Total number of newborns with delayed crying is 23 (15.44%), out of which thin MSL are 10 (7.6%) cases and 13 (72.2%) are thick MSL cases.

4: APGAR score at 1 minute and 5 minute: Majority of the workers observed that meconium stained AF was associated with low APGAR score at birth. Our findings are consistent with that of Miller\(^{15}\), Hari Bhaskar\(^{16}\) studied that one minute APGAR score of less than 3 was due to antepartum and intrapartum asphyxia in thick MSL. Sedaghian\(^{17}\) found that both MSAF and MAS are associated negatively with one and five minute APGAR score.

5: Respiratory rate: Average respiratory rate is 60 in total 149 newborns; in thin MSL it is 58/min and it is 74/min in thick MSL.

6: Saturation of oxygen in blood: Average Spo2 in 149 cases is 92%; it is 93.13 % in thin MSL and 83.94% in thick MSL. The mean difference between two groups is statistically significant (p value = 0.000).

7: Mode of Delivery: There is increased incidence of caesarean section in MSAF deliveries, especially thick MSL group. The mean difference between two groups is statistically significant (p value = 0.000). Khatree\(^{18}\) recorded higher incidence of CS because of higher incidence of CPD and fetal distress. Goud and Krishna\(^{19}\) observed that thick meconium staining has higher CS rate than thin group. It is comparable with our studies. Arun Nayak\(^{20}\) observed that incidence of operative delivery was more in thick MSL group with CS rate 16.9% and 8% in thin MSL. Abramovic\(^{21}\) and Walker\(^{22}\) advised for early termination by LSCS if MSAF was associated with abnormality of FHR and with low fetal scalp blood pH.

8. Resuscitation Required: Total number of cases which required resuscitation is 33 (22.68%) of which thin MSL is 17 (12.88%) cases and 16 (88.9%) cases belong to thick MSL. The mean difference between two groups is statistically significant (p value = 0.000). Swain et al\(^{23}\) in their study performed oropharyngeal suction in all cases, similar to findings of Khatun et al. Muntra et al, Shazia Qadir et al\(^{24}\).

9. Maternal Risk Factors: Average number of maternal risk factors is 28 (12%). It comprises PIH, oligohydraminos, GDM. The p value is .000 which is statistically significant. Desmond\(^{25}\), Fuzikura\(^{26}\) concluded that actual causes of which control meconium passage are due to diminished oxygen transfer, toxemia, hypertension, anemia, obesity, type of labour, maternal age, prolonged gestation. Meis\(^{27}\) observed that meconium staining increases two fold in prolonged labour.

10: Mechanical ventilation: Total number of cases which require mechanical ventilation is 7 (4.69%). Total number of cases which require mechanical ventilation is 7 (4.69%) out of which 2/131 cases belong to thin MSL and 5/18 cases (27.78%) belong to thick MSL. Overall, requirement of mechanical ventilation in MSAF newborns is increased.

Table 2:

<table>
<thead>
<tr>
<th>Requirement of Mechanical Ventilation</th>
<th>Priyadarshini V. et al(^{28})</th>
<th>Espinheira MC et al(^{29})</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>48.57 %</td>
<td>43.1 %</td>
<td>27.78 %</td>
</tr>
</tbody>
</table>

11: Meconium Aspiration Syndrome: Total number of cases with MAS is 16 (10.67%); of which 4/131 cases (2.67%) belong to thin MSL and 12/18 cases (66.67%) belong to thick MSL. The mean difference between two groups is statistically significant (p value = .000). The overall incidence of meconium aspiration in live born infants is 1 to 3%. 10% to 30% of meconium stained babies develop varying degrees of respiratory difficulties. Brown\(^{30}\) in 2 different studies in India, Gupta\(^{31}\) showed 6% of meconium stained babies develop MAS, whereas Bhasker\(^{32}\) found 23.7% MAS in meconium stained babies with mortality of 18.1%. Wiswell\(^{33}\) found 9% MAS cases in his study. Our findings are consistent with findings of Wiswell\(^{33}\) and Brown\(^{30}\).

12: Other Complications: Other complications associated with MSL are: VAP, Sepsis, HIE, BPD. Most of the workers demonstrated increased incidence of pulmonary complications in babies born with thick MSAF.

Schaffer\(^{14}\) (1971) concluded aspiration of meconium was one of the major cause of dyspnea and respiratory distress in the newborn.

Fujikura\(^{26}\) (1975) observed a less incidence of respiratory distress syndrome in stained babies. Our findings are not consistent with his study.

Brown\(^{30}\) (1981) found, among autopsy of 200 still births, 12.5% demonstrated evidence of aspiration of AF in alveolar system.

Steven (2004)\(^{33}\) concluded that meconium seems to be toxic to the lungs.

13: Number of deaths (Mortality): Total number of deaths is 7 out of 149 total cases (4.70%); of which 2 cases (1.53%) belong to thin MSL and 5 cases (27.78%) belong to thick MSL. The mean difference between two groups is statistically significant (p value = .000).
Table 3:

<table>
<thead>
<tr>
<th>Nature of amniotic fluid</th>
<th>Death reported by different authors</th>
<th>Percentage</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Meconium</td>
<td>Hellman<sup>34</sup>, Debdas<sup>35</sup>, Goud and Krishna<sup>19</sup></td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>True Meconium</td>
<td>Narang<sup>35</sup>, Present study</td>
<td>7.7%</td>
<td>7.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.70%</td>
</tr>
</tbody>
</table>

Percentage of death reported by different authors is Hellman³⁴ (7%), Debdas³⁵ (3%), Goud and Krishna¹⁹ (7.7%) which is comparable with our study.

14: Correlation of nature of amniotic fluid with NICU stay for >7 days: Total number of cases with NICU stay >7 days is 27 out of 149 (18.12%); of which 14 cases (10.68%) belong to thin MSL and 13 cases (72.2%) belong to thick MSL. Our findings are consistent with findings of Pravin Goud¹⁹ and non-consistent with that of Narli N et al²⁷ and Priyadarshini et al²⁸.

Table 4: Study on NICU stay by different authors:

<table>
<thead>
<tr>
<th>Nature of amniotic fluid</th>
<th>Narli N et al<sup>27</sup></th>
<th>Priyadarshini et al<sup>28</sup></th>
<th>Pravin Goud<sup>19</sup></th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Meconium</td>
<td>8.4%</td>
<td>9.2%</td>
<td>10.8%</td>
<td>10.68%</td>
</tr>
<tr>
<td>Thick Meconium</td>
<td>11.2%</td>
<td>14.1%</td>
<td>54.9%</td>
<td>72.2%</td>
</tr>
</tbody>
</table>

Results:
Total 149 cases were enrolled. In our study, it was found that there is higher incidence of delayed crying (72.2%), respiratory distress (22.15%), low Apgar scoring, low oxygen saturation in blood (average sPO₂=83.94%), more number of cesarean sections (88.9%); increased requirement of resuscitation (88.9%), mechanical ventilation (27.78%), long duration of NICU stay (72.2%), more MAS cases (66.67%), increased rate of birth asphyxia (16%), increased perinatal mortality (27.78%) in thick MSL group compared to thin MSL group.

Conclusion:
Meconium stained amniotic fluid is associated with higher rate of cesarean delivery, increased need for neonatal resuscitation, fetal distress, increased rate of birth asphyxia with hypoxic ischemic encephalopathy, meconium aspiration syndrome, increased rate of NICU admission, increased mortality. The morbidity is more with thick MSL than thin MSL. The knowledge of antenatal and peri-natal factors associated with MSF provide a way of early identification of high risk cases. It can be managed by optimal timely intervention in order to avoid severe asphyxia and meconium aspiration and its complications.

Acknowledgement:
We are thankful to KD Medical College, Hospital and Research Centre, Mathura (U.P.) for support.

References:
1. Enrico Volante, Dandolo Gramellini, Sabrina Moretti, Christine Kailura; ACTA BIO MEDICA ATENEO PARMENSE 2004; 75; Suppl. 1: 71-75