THYROID DISORDERS AND POLYCYSTIC OVARY SYNDROME

Dr. B S Meena¹, Dr. Neeta Meena²
¹ Senior Professor & HOD, ² Resident Doctor
¹,² Department of Obstetrics and Gynaecology, SMS Medical College, Jaipur (Raj.)

Article Info: Received 10 May 2020; Accepted 28 June 2020
DOI: https://doi.org/10.32553/ijmbs.v4i7.1263
Corresponding author: Dr. Neeta Meena
Conflict of interest: No conflict of interest.

Abstract
Background: Polycystic ovarian syndrome (PCOS) is the most common form of chronic anovulation associated with androgen excess; perhaps occurring in 5-10% of reproductive women.

Methods: Observational study done in the Department of Obstetrics & Gynaecology, SMS Medical College, Jaipur. Forty cases of women with PCOS based on Rotterdam’s criteria and an equal number of age-matched controls (women without PCOS) were included in the study.

Results: T4 level was significantly lower in PCOS group with mean free T4 level 0.87 ± 0.75 ng/ml in PCOS group v/s 1.92 ± 0.84 ng/ml in control group (p-value = 0.001).

TSH level was significantly higher in PCOS group with mean TSH level 8.86 ± 7.57 mU/L in PCOS group v/s 3.40 ± 1.21 mU/L in control group (p-value = 0.001).

Conclusion: High prevalence of thyroid disorders in PCOS patients thus points towards the importance of early correction of hypothyroidism in the management of infertility associated with PCOS.

Keywords: T4, T3, TSH, PCOS

Introduction
Polycystic ovarian syndrome (PCOS) is the most common form of chronic anovulation associated with androgen excess; perhaps occurring in 5-10% of reproductive women. PCOS is viewed as a heterogeneous disorder of multifactorial etiology. It is also associated with increased metabolic and cardiovascular risk factors. These risks are linked to insulin resistance and compounded by the common occurrence of obesity, although insulin resistance is also present in non-obese woman with PCOS. During the reproductive years, PCOS is associated with important reproductive morbidity including infertility, irregular uterine bleeding and increased pregnancy loss.

Dysfunction and anatomic abnormalities of the thyroid are among the most common diseases of the endocrine gland. Abnormalities in the supply of thyroid hormone to the peripheral tissue are associated with alteration in a number of metabolic processes. Early stages of thyroid dysfunction (before symptoms are obvious) can lead to subtle change in ovulation and endometrial receptivity, which may have profound effect on fertility. Infantile hypothyroidism if untreated, leads to sexual immaturity. Untreated juvenile hypothyroidism causes a delay in the onset of puberty followed by anovulatory cycles. In adult woman, severe hypothyroidism may be associated with diminished libido and failure of ovulation. Primary ovarian failure can also be seen in patients with Hashimoto's thyroiditis as a part of autoimmune polyglandular syndrome. Rarely, in primary hypothyroidism, secondary depression of pituitary function may lead to ovarian atrophy and amenorrhea.
Inclusion Criteria
● Age group - 13-45 years.
● Giving written informed consent

Exclusion Criteria
● Menstrual irregularity
● Hyperandrogenism
● With polycystic ovaries
● Insulin resistance
● Inflammatory and autoimmune disease
● Metabolic abnormalities

Statistical Analysis
➢ Continuous variables were expressed as mean and standard deviation, nominally/categorical variable was summarized as per proportion.
➢ Parametric and non parametric tests were used for continuous and nominal variable as per yield of data.
➢ p-value < 0.05 was taken as significant.
➢ Medcalc 16.4 version software was used for statistical calculation.

Results

Table 1: Risk of Thyroid Disorder in PCOS and Control Group

<table>
<thead>
<tr>
<th>Group</th>
<th>With Thyroid Disease</th>
<th>Without Thyroid Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>PCOS</td>
<td>14</td>
<td>35.00</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>12.50</td>
</tr>
</tbody>
</table>

35.00% PCOS cases were present with thyroid disorder.

Table 2: Statistical Value of Thyroid Specific Variable of Case and Control Group

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cases</th>
<th>Controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>T3</td>
<td>2.50</td>
<td>1.22</td>
<td>2.02</td>
</tr>
<tr>
<td>T4</td>
<td>0.87</td>
<td>0.75</td>
<td>1.92</td>
</tr>
<tr>
<td>TSH</td>
<td>8.86</td>
<td>7.57</td>
<td>3.40</td>
</tr>
</tbody>
</table>

TSH level were significantly higher in PCOS and T4 level were significantly lower in PCOS.

Discussion

Patients with PCOS often have defective progesterone secretion which leads to an increased estrogen to progesterone ratio. Oestrogen can increase the expression of IL-6 in T cell and inhibitory action of progesterone may leads to over stimulated immune system and makes these patients more prone to autoimmune disorder.

T4 level was significantly lower in PCOS group with mean free T4 level 0.87 ± 0.75 ng/ml in PCOS group v/s 1.92 ± 0.84 ng/ml in control group (p-value = 0.001). Similar results were reported by Sinha U et al (2013). In our study mean serum TSH level was found to be significantly higher in PCOS group (8.86 ± 7.57 IU/ml) and in control group (3.40 ± 1.21 IU/ml) and p-value = 0.001. Significant difference was found between two groups. Similar correlation between TSH and Anti-TPO antibody level was reported by Janssen OE et al (2004).

Conclusion

High prevalence of thyroid disorders in PCOS patients thus points towards the importance of early correction of hypothyroidism in the management of infertility associated with PCOS.

References