NEUROSONOGRAPHY SPECTRUM OF HYPOXIC ISCHEMIC ENCEPHALOPATHY

Dr. Sunil Jakhar1, Dr. Bineeta Singh Parihar2, Dr. Anu Bhandari3, Dr. Kuldeep Mendiratta4, Dr. Meenu Bagarhatta5
Assistant Professor 1, Junior Resident 2, Professor 3, Professor 4, Professor and Head of Department 5
Department of Radiodiagnosis, SMS Medical College and Attached Group of Hospitals

Article Info: Received 10 July 2020; Accepted 05 August 2020
DOI: https://doi.org/10.32553/ijmbs.v4i8.1335
Corresponding author: Dr. Sunil Jakhar
Conflict of interest: No conflict of interest.

Abstract
Introduction: Neonatal hypoxic-ischemic encephalopathy (HIE) is a very catastrophic condition that may result in severe neurologic deficits or even death. Neuroimaging with transcranial ultrasound (US) is a valuable tool in the workup of patients with HIE. The pattern of brain injury depends on the severity and duration of hypoxia and degree of brain maturation.1
Aim: To study imaging spectrum of various stages of HIE
Objective: To determine severity of HIE on basis of Neurosonography.

Materials and Method: Pre term neonates having some history of hypoxia antenatally or perinatally like placental abruption, low Apgar at delivery, seizures coming to JK lone Paediatric Hospital attached to SMS hospital referred to Dept of Radiodiagnosis for evaluation of HIE were scanned using Transcranial ultrasound it included grayscale on Hitachi machine.
Results- Different grades of HIE changes were witnessed. Out of 33 cases: 5 neonates were sonographically normal, 3 showed grade 1 GMH, 3 showed grade 2 GMH, 4 showed grade 3 GMH and 4 showed grade 4 . 3 neonates showed grade 1 PVL, 2 grade 2 PVL, 4 showed grade 3 PVL, 5 showed grade 4 PVL. In doppler findings of ACA, it was noted the RI (resistive index) was on the higher side.
Conclusion: Neurosonography and doppler is very helpful non-invasive tool to detect early changes of HIE and assess severity and progression of hypoxic brain injury.
Keywords: HIE, hypoxic brain injury, germinal matrix haemorrhage and periventricular leucomalacia

Introduction
Neonatal hypoxic-ischemic encephalopathy (HIE) is a devastating condition that may result in death or severe neurologic deficits in children. The changes are either due to hemodynamic changes i.e. Germlinal matrix haemorrhage (GMH) or due to hypoxia or hypoperfusion i.e. Periventricular leukomalacia (PVL). Neuroimaging with transcranial ultrasound (US) is a valuable tool in the workup of patients with HIE. Severity and duration of hypoxia and degree of brain maturation determines brain injury patterns.

In grading for GMH there are 4 grades: Grade 1 refers to the haemorrhage restricted to subependymal region/germinal matrix which is seen in the caudothalamic groove. Grade 2 refers to extension into normal sized ventricles and typically filling less than 50% of the volume of the ventricle. Grade 3 refers to extension into dilated ventricles. Grade 4 refers to grade III with parenchymal haemorrhage. Grading system for GMH-IVH was proposed by Papile et al 6

In grading of PVL there are 4 grades: Grade 1 refers to areas of increased periventricular echogenicity without any cyst formation persisting for more than 7 days. Grade 2 refers to the echogenicity has resolved into small periventricular cysts. Grade 3 refers to areas of increased periventricular echogenicity that develop into extensive periventricular cysts in the occipital and frontoparietal region. Grade 4 refers to areas of increased periventricular echogenicity in the deep white matter developing into extensive subcortical cysts.

Materials and Method
Pre term neonates coming to JK lone Paediatric Hospital attached to SMS hospital referred to Department of Radiodiagnosis for evaluation of HIE were scanned using Transcranial ultrasound.

Neonates having some history of hypoxia antenatally or perinatally like placental abruption, low Apgar at delivery, or seizures are included.

Neonates whose vitals were unstable, on ventilator and those parents who were non consenting were excluded.
Result:

Different grades of HIE changes were witnessed. In this study 33 cases were taken and out of those 33 cases, 5(15%) neonates were sonographically normal, 3(9%) showed grade 1 GMH, 3(9%) showed grade 2 GMH, 4(12%) showed grade 3 GMH and 4(12%) showed grade 4. 3(9%) neonates showed grade 1 PVL, 2(6%) showed grade 2 PVL, 4(12%) showed grade 3 PVL, 5(15%) showed grade 4 PVL.
Figure 7: Sagittal image for Intraparenchymal Haemorrhage. Grade 4 GMH

Figure 8: Increased periventricular echogenicity. Grade 1 PVL

Figure 9: Sagittal Image for increased periventricular echogenicity. Grade 1 PVL

Figure 10: Periventricular cyst noted. Grade 2 PVL

Figure 11: Sagittal image showing extensive periventricular cysts. Grade 3 PVL

Figure 12: Coronal image showing extensive periventricular cysts. Grade 3 PVL

Figure 13: Coronal image showing extensive subcortical cysts. Grade 4 PVL
Figure 14: Sagittal image showing extensive subcortical cysts. Grade 4 PVL

Discussion:

Hypoxic-ischemic encephalopathy is the most important cause of neurological morbidity and mortality in preterm neonates.

Hill et al. showed the possibility of diagnosing periventricular leukomalacia (PVL) in the newborn period using cranial sonography. Since then, knowledge about sequence of events appearing in sonograms has been available. In the acute phase, increased echogenicity of the periventricular white matter can be noted, which occurs within 24 to 48 hours after a hypoxic-ischemic incident. The affected periventricular white matter is usually as bright as or lighter than the choroid plexus, as opposed to a normal periventricular halo, which is less bright than the choroid plexus. Two to 4 weeks later, cysts may appear in the hyperechogenic areas. Eventually, the cysts dissolve with the development of ventricular enlargement.²

De Vries et al described spectrum of leukomalacia³

Conclusion: Neurosonography and doppler is very helpful non-invasive tool to detect early changes of HIE and assess severity and progression of hypoxic brain injury.

References: