Determining the Effect of Vitamin D Supplementation on Pregnancy Outcome: A Comparative Study.

Dr. Nutan Narayan, Dr. Dipti Roy

Abstract

Aim: To determine the effect of vitamin D supplementation on pregnancy outcome.

Materials and methods: The present prospective comparative interventional study was conducted in the Department of Obstetrics and Gynecology, Nalanda Medical College and Hospital, Patna, Bihar. Total 60 patients were divided into two groups. Group I (n=30): received only routine iron, folic acid and calcium supplementation (irrespective of vitamin D level). Group II (n=30): vitamin D supplementation (irrespective of vitamin D level) in the form of oral cholecalciferol sachet 60,000IU weekly till 10 weeks along with routine iron, folic acid and calcium supplementation. Results: Pre-eclampsia was observed in 26.7% of the patients who didn’t receive vitamin D supplement whereas the group I which received supplementation showed on pre-eclampsia in 6.7% of the patients (p=0.001).

Conclusion: This study concludes that there is significant role of vitamin D supplementation in pregnant women in prevention of pre-eclampsia.

Keywords: pre-eclampsia, vitamin D, singleton

Introduction

Vitamin D is especially important during pregnancy as low maternal vitamin D stores may contribute to problems such as low birth weight and small for gestational age infants, as well as an increased risk of maternal comorbidities.

Vitamin D deficiency is worldwide epidemic, with a prevalence that ranges from 18% to 84% depending on the country of residence, ethnicity, and local clothing customs and dietary intake [6, 7]. Clinical studies establishing an association between vitamin D levels and adverse pregnancy outcomes such as pre-eclampsia, gestational diabetes, and low birth weight, preterm labor, and caesarean delivery have conflicting results.

Pre-eclampsia is a pregnancy specific disorder characterized by new onset hypertension and proteinuria after 20 weeks of gestation. Pre-eclampsia as identified by new onset hypertension and proteinuria during pregnancy, is a serious disorder affecting pregnancies, and is alleviated only by delivery of placenta.

Pre-eclampsia is thought to originate in abnormal angiogenesis and immunologic adaptation occurring during implantation and trophoblast invasion at the beginning of pregnancy. There is evidence that vitamin D affects transcription and function of genes responsible for trophoblast invasion, angiogenesis critical for implantation, and fetal allograft immunologic tolerance. Vitamin D regulates angiogenic processes through direct effects on angiogenesis gene transcription, including vascular endothelial growth factor (VEGF).

At present there is not enough evidence to establish the effectiveness of vitamin D supplementation in pregnancy and therefore, vitamin D supplementation is not routinely offered to all pregnant women. Hence the present study was conducted with the aim to determine the effect of vitamin D supplementation on pregnancy outcome.

Materials and method

The present prospective comparative interventional study was conducted in the Department of Obstetrics and Gynecology, Nalanda Medical College and Hospital, Patna, Bihar.

Inclusion criteria
- Age between 18 - 35 years
- Single pregnancy
- Period of gestation more than or equal to 28 weeks
- Who give informed consent

Exclusion criteria
- Women with chronic diseases before pregnancy, such as chronic hypertension, diabetes mellitus, kidney and liver diseases
- Gestational age less than 28 weeks
- History of intake of medications influencing bone, vitamin D or calcium metabolism e.g. antiepileptic, anti-tubercular drugs in the last 6 months.
- Not willing to participate
Ethical approval and Informed consent

The study protocol was reviewed by the Ethical Committee of the Hospital and granted ethical clearance. After explaining the purpose and details of the study, a written informed consent was obtained.

Sample selection

The sample size was calculated using a prior type of power analysis by G* Power Software Version 3.0.1.0 (Franz Faul, Universität Kiel, Germany). The minimum sample size was calculated, following these input conditions: power of 0.80 and \(P \leq 0.05 \) and sample size arrived were 24 participants in each group. The final sample achieved was 30 per group.

Grouping

Group I: received only routine iron, folic acid and calcium supplementation (irrespective of vitamin D level).

Group II: vitamin D supplementation (irrespective of vitamin D level) in the form of oral cholecalciferol sachet 60,000IU weekly till 10 weeks along with routine iron, folic acid and calcium supplementation.

A comprehensive general physical examination, systemic and obstetric examination was conducted at first antenatal visit for all the subjects were done.

Statistical analysis

The recorded data was compiled entered in a spreadsheet computer program (Microsoft Excel 2010) and then exported to data editor page of SPSS version 20 (SPSS Inc., Chicago, Illinois, USA). Descriptive statistics included computation of percentages, means and standard deviations were calculated. Statistical test applied for the analysis were student t-test and chi-square test. Level of significance was set at \(p \leq 0.05 \).

Results

Table 1: Demographic and clinical profile

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>I</td>
<td>25.20</td>
<td>3.48</td>
<td>0.632 (NS)</td>
</tr>
<tr>
<td>Gestational Age weeks</td>
<td>I</td>
<td>32.26</td>
<td>3.28</td>
<td>0.564 (NS)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>33.11</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>I</td>
<td>20.79</td>
<td>1.74</td>
<td>0.713 (NS)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>20.66</td>
<td>1.51</td>
<td></td>
</tr>
</tbody>
</table>

Test applied: student t-test

Table 2: distribution as per parity

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parity</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18</td>
<td>30</td>
<td>0.135 (NS)</td>
</tr>
<tr>
<td></td>
<td>0.30%</td>
<td>8.3%</td>
<td>8.3%</td>
</tr>
<tr>
<td>II</td>
<td>17</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28.3%</td>
<td>18.3%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

Test applied: chi-square test

Table 3: distribution of mode of delivery

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Mode of Delivery</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>NVD</td>
<td>13</td>
<td>58.3%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>LSCS</td>
<td>17</td>
<td>58.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Test applied: chi-square test

Table 4: distribution of pregnancy outcome

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Pregnancy Outcome</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td></td>
<td>8</td>
<td>0.001 (sig.)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td></td>
<td>2</td>
<td>0.061 (NS)</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td></td>
<td></td>
<td>26.7%</td>
<td>6.7%</td>
</tr>
<tr>
<td>GDM</td>
<td></td>
<td></td>
<td>5</td>
<td>6.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.7</td>
<td>0.046 (sig.)</td>
</tr>
<tr>
<td>Pre-term labor</td>
<td></td>
<td></td>
<td>7</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Test applied: chi-square test

Discussion

All the patients were assumed to be vitamin D deficient as Vitamin D deficiency prevails in epidemic proportions all over the Indian subcontinent, with a prevalence of 70%–100% in the general population. In India, widely consumed food items such as dairy products are rarely fortified with vitamin D.

The mean age in our study is 25.57 years among supplemented group and 25.20 years among non-supplemented group. The age distribution was comparable to that observed by Sachan et al.8 mean age 24.0 years and F Xiang et al.9 mean age 26.4 + 3.1 years.

Sablok et al.10 found prevalence of vitamin D deficiency in pregnant women and to evaluate the effect of supplementation with cholecalciferol in improving vitamin D levels in pregnant women and evaluate its correlation with fetal-maternal outcome. The intervention group received supplementation of vitamin D in dosages depending upon 25(OH)-D levels. 40% patients in group A and 20.3% patients in group B developed pre-eclampsia. The result of this study was comparable with our study. Hypponen et al.11 This study suggests that low maternal serum 25 hydroxy vitamin D concentrations increases pre-eclampsia risk and that vitamin D supplementation lowers this risk. The result of this study was comparable with our study.

De-RegillLM et al.12 suggested that women who received vitamin D supplements may have a lower risk of preeclampsia than those receiving no intervention or placebo. The result of this study was comparable with our study.
Conclusion
This study concludes that there is significant role of vitamin D supplementation in pregnant women in prevention of pre eclampsia. In the supplemented group the incidence of pre eclampsia was less.

References