STUDY OF SERUM LIPID PROFILE LEVEL IN CORONARY ARTERY DISEASE PATIENTS
Shesharam Patel¹, Kanaram Patel²

¹ Senior Demonstrator Biochemistry, Government Medical College, Pali.
² 3rd Year Resident Forensic Medicine, Dr. S.N Medical College, Jodhpur

Article Info: Received 14 April 2019; Accepted 10 June 2019
DOI: https://doi.org/10.32553/ijmbs.v3i6.304
Address for Correspondence: Kanaram Patel
Conflict of interest: No conflict of interest.

Abstract

Background: Adverse lipid profile has been recognized as an independent risk factor for atherosclerosis and coronary artery disease (CAD).

Materials and Methods: 100 subjects aged between 35 to 65 years, comprising of 50 normal control and 50 patients suffering from CAD were studied.

Result: The mean total cholesterol level was found to be 174.2±21.05 mg/dl with a range of 150-200 mg/dl present in normal subjects and mean concentration of cholesterol level was increased to 254.23±45.70 mg/dl in CAD patients. The mean Triglyceride level was found to be 117.58±44.16 mg/dl with a range of 75-150 mg/dl present in normal subjects and mean concentration of Triglyceride level was increased to 184.24±42.02 mg/dl in CAD patients.

Conclusion: This cross sectional study showed that high serum cholesterol, LDL, triglyceride and low HDL cholesterol were clinically significant in all the age groups.

Keywords: Coronary artery disease (CAD), Cholesterol, Triglyceride, LDL, HDL.

Introduction

According to a report, mortality from cardiovascular diseases was projected to decline in developed countries from 1970 to 2015, while it was projected to almost double in the developing countries¹. In the Global Burden of Disease study, it was reported that out of 9.4 million deaths in the whole world in 1990, cardiovascular diseases caused 2.3 million deaths (25%). It has been predicted that by 2020 there would be 111% increase in cardiovascular deaths in India. This increase is much more than 77% for China, 106% for other Asian Countries and 15% for economically developed countries². The incidence of coronary heart disease in any population is associated with the relative shifts in its biological characteristics, such as serum lipids, blood pressure, blood glucose, insulin and thrombogenic factors. This hypothesis is based on Pickering’s observation that sick individuals are just the extreme of a continuous distribution and Key's postulation of sick individuals and sick populations³. These shifts are a consequence of changes in lifestyles-smoking, physical activity, alcohol intake and rich diet as well as psychosocial influences that accompany economic transition⁴.

Adverse lipid profile has been recognized as an independent risk factor for atherosclerosis and coronary artery disease (CAD). Lipid disorder often leads to myocardial infarction and heart failure. The relationship between cholesterol and saturated fat with CAD is identified as early as in 1950s. It has been shown that control of total serum cholesterol levels can reduce the incidence and mortality from coronary artery disease. At present, it is firmly believed that dyslipidemia is both atherogenic and thrombogenic.

During dyslipidemia, a major biochemical change in the arteries take place due to accumulation of lipids either in the form of free cholesterol or its ester and this leads to formation of plaques in inner wall of artery. If total cholesterol level is below 150 mg/dl, no new plaques will be formed. Acute coronary event is expected when the plaques with thin fibrous cap ruptures. It is not the degree of narrowing of the coronary artery but the nature of the plaque, which determines the onset of acute coronary event. Dyslipidemia is known to increase platelets
aggregation, fibrinogen levels and platelets activation inhibitor. CAD is associated with several factors, including raised serum lipid and lipoproteins, an increase in LDL oxidation (free radical damage), increased platelet aggregation (clumping), increased plasma fibrinogen, coagulation factors, hypertension, alterations in glucose metabolism, smoking, genetic and environmental factors.

MATERIALS AND METHODS
This descriptive study was included 100 subjects aged between 35 to 65 years, comprising of 50 normal control and 50 patients suffering from CAD. Patients with renal disease, liver disease, diabetes mellitus, respiratory disease and heart failure were excluded from the study.

The blood sample of CAD patients including controls group was taken after fasting for 10-12 hours. 7-10ml of venous blood was drawn from the antecubital vein by aseptic technique in plain vial. Serum was separated from the collected sample for biochemical analysis. Lipid profile investigations that included serum cholesterol, triglyceride, High density lipoprotein cholesterol (HDL-cholesterol) and Low density lipoprotein cholesterol (LDL-cholesterol) were carried out on a semi automated analyzer using standard kits. Statistical analysis was done using SPSS software (version 20). t-test was used for the comparison of two groups. p-value of <0.05 was considered statistically significant and a p-value of <0.001 was considered to be highly significant.

RESULTS

Table 1: The level of total cholesterol among the cases of CAD and control group

<table>
<thead>
<tr>
<th>Total Cholesterol</th>
<th>No. of cases</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50</td>
<td>174.2 ± 21.05</td>
</tr>
<tr>
<td>CAD Patients</td>
<td>50</td>
<td>254.23 ± 45.70</td>
</tr>
</tbody>
</table>

t=11.39, p<0.001

Table 2: The level of HDL among the cases of CAD and control group

<table>
<thead>
<tr>
<th>HDL</th>
<th>No. of cases</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50</td>
<td>44.80 ± 6.51</td>
</tr>
<tr>
<td>CAD Patients</td>
<td>50</td>
<td>41.74 ± 8.02</td>
</tr>
</tbody>
</table>

t=2.52, p<0.05

Table 3: The level of LDL among the cases of CAD and control group

<table>
<thead>
<tr>
<th>LDL</th>
<th>No. of cases</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50</td>
<td>107.58 ± 44.16</td>
</tr>
<tr>
<td>CAD Patients</td>
<td>50</td>
<td>184.24 ± 42.02</td>
</tr>
</tbody>
</table>

t=11.28, p<0.001

Table 4: The level of Triglycerides among the cases of CAD and control group

<table>
<thead>
<tr>
<th>Triglycerides</th>
<th>No. of cases</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50</td>
<td>116.84 ± 46.03</td>
</tr>
<tr>
<td>CAD Patients</td>
<td>50</td>
<td>161.06 ± 72.10</td>
</tr>
</tbody>
</table>

t=3.56, p<0.001

DISCUSSION
The mean total cholesterol level was found to be 174.2±21.05 mg/dl with a range of 150-200 mg/dl present in normal subjects and mean concentration of cholesterol level was increased to 254.23±45.70 mg/dl in CAD patients. The increase was statistically highly significant (p<0.001) and the result of present study resembled with the findings of Ambrose et al5 and Watson et al6.

The mean HDL level was found to be 44.80±6.51 mg/dl with a range of 30-60 mg/dl present in normal subjects and mean concentration of HDL level was decreased to 41.74±8.02 mg/dl in CAD patients. The decrease was statistically significant (p<0.05) and the result of present study resembled with the finding of Connor WE et al7.

The mean LDL level was found to be 108.06±24.06 mg/dl with a range of 80-150 mg/dl present in normal subjects and mean concentration of LDL level was increased to 185.42±42.10 mg/dl in CAD patients. The increase was statistically highly significant (p<0.001) and the result of present study resembled with the findings of Tibblin et al8 and Ritu et al9.

The mean Triglyceride level was found to be 117.58±44.16 mg/dl with a range of 75-150 mg/dl present in normal subjects and mean concentration of Triglyceride level was increased to 184.24±42.02 mg/dl in CAD patients. The increase was statistically highly significant (p<0.001) and the result of present study resembled with the findings of Knuiman JT10 and Ambrose et al5.
CONCLUSION

The importance of this study lies in the fact that it reveals a distinct association of dyslipidemia with CAD and highlights patients with dyslipidemia as potential targets for early intervention. Therefore, early detection of abnormal lipid profile and its proper management by life-style modification and by drugs, if needed may play a key role in preventing the progression of atherosclerotic process in coronary artery disease.

REFERENCES